sage: R. = QQ[]

sage: preparse("R. = QQ[]")

"R = QQ['a, b, c']; (a, b, c,) = R._first_ngens(Integer(3))"

Now everything is crystal clear! Let's study what QQ is:

sage: QQ?

Type: RationalField

Base Class:

String Form: Rational Field

Namespace: Interactive

Docstring:

The class class{RationalField} represents the field Q of

rational numbers.

Cool, why not. So what is the _first_ngens method doing? Let's find out:

sage: R._first_ngens?

Type: builtin_function_or_method

Base Class:

String Form:

Namespace: Interactive

Hm, not really useful. Let's push harder:

sage: R._first_ngens??

Type: builtin_function_or_method

Base Class:

String Form:

Namespace: Interactive

Source:

def _first_ngens(self, n):

v = self.gens()

return v[:n]

So the equivalent code is this:

sage: R.gens()

(a, b, c)

sage: R.gens()[:3]

(a, b, c)

Cool, why not. So what is the R.gens() doing?

sage: R.gens?

Type: builtin_function_or_method

Base Class:

String Form:

Namespace: Interactive

Docstring:

Return the tuple of variables in self.

EXAMPLES:

sage: P.= QQ[]

sage: P.gens()

(x, y, z)

sage: P = MPolynomialRing(QQ,10,'x')

sage: P.gens()

(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

sage: P.= MPolynomialRing(QQ,2) # weird names

sage: P.gens()

(SAGE, SINGULAR)

Ah, that's the answer we want. :)

## No comments:

Post a Comment